Method of resolution of 3SAT in polynomial time
نویسنده
چکیده
Presentation of a Method for determining whether a problem 3Sat has solution, and if yes to find one, in time max O(n 15 ). Is thus proved that the problem 3Sat is fully resolved in polynomial time and therefore that it is in P, by the work of Cook and Levin, and can transform a SAT problem in a 3Sat in polynomial time (ref. Karp), it follows that P = NP. Open Source program is available at http://www.visainformatica.it/3sat Abstract (in Italiano) Presentazione di un Metodo per determinare se un problema 3Sat ha soluzione, e se si trovarne una, che richiede un tempo non superiore a O(n 15 ). Viene così provato che il problema 3Sat è risolto in un tempo polinomiale e quindi che lo stesso è in P, dai lavori di Cook e Levin, e dal poter trasformare un problema SAT in uno 3Sat in un tempo polinomiale (rif. Karp), ne segue che P = NP. E’ disponibile, Open Source, un programma che usa il Metodo per risolvere un problema 3Sat su sito http://www.visainformatica.it/3satin Italiano) Presentazione di un Metodo per determinare se un problema 3Sat ha soluzione, e se si trovarne una, che richiede un tempo non superiore a O(n 15 ). Viene così provato che il problema 3Sat è risolto in un tempo polinomiale e quindi che lo stesso è in P, dai lavori di Cook e Levin, e dal poter trasformare un problema SAT in uno 3Sat in un tempo polinomiale (rif. Karp), ne segue che P = NP. E’ disponibile, Open Source, un programma che usa il Metodo per risolvere un problema 3Sat su sito http://www.visainformatica.it/3sat My English is bad, so this work is essential. I hope my page is enough clear, I hope someone wants to rewrite in true English. Introduction Everything comes from intuition and coincidence Intuition: 3Sat problem is research of True Value that making TRUE all Clauses of problem. With n Variables we find 8n*(n-1)*(n-2)/6 Clauses, this Clauses are not all in 3Sat [max 7/8 are in 3Sat]. We post in ~3Sat Clauses that not is in 3Sat. We move one Clauses from ~3Sat to 3Sat, if number of solutions not decrease we leave Clause in 3Sat else no. We end if not is possible move Clause from ~3Sat to 3Sat because we lost solutions. Now we can find one solution, n-tuple of Literal. This the intuition: minimize Clauses in ~3Sat. Coincidence: One operation move, in polynomial time, Clauses from ~3Sat to 3Sat. When it end we have in ~3Sat Clauses and in all solution triad of True Value. This the coincidence: number of Clauses in ~3Sat is equal number of tried of True Values, also when we not have Clauses because not have tried [not have solution]. Really funny, and I not believe in coincidence..
منابع مشابه
Breadth First Search 3SAT Algorithms for DNA Computers
This paper demonstrates that some practical 3SAT algorithms on conventional computers can be implemented on a DNA computer as a polynomial time breadth first search procedure based only on the fundamental chemical operations identified by Adleman and Lipton’s method. In particular, the MonienSpeckenmeyer algorithm, when implemented on DNA, becomes an time, ! space algorithm, with significant in...
متن کامل2 P vs . NP and Diagonalization
2.1 3SAT is NP–hard Definition 2.1 (the class NP). L ⊂ {0, 1}∗ is in the class of NP if there exists a polynomial p : N→ N and a Turing machine M (called the verifier for L) such that for every x ∈ {0, 1}∗, x ∈ L ⇔ ∃y ∈ {0, 1}p(|x|) such that M(x, y) = 1. If x ∈ L and y ∈ {0, 1}p(|x|) satisfy M(x, y) = 1, then we call y a certificate/witness for x (with respect to the language L and machine M)....
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملMildly exponential reduction from gap 3SAT to polynomial-gap label-cover
We show that if gap-3SAT has no sub-exponential time algorithms then a weak form of the sliding scale conjecture holds. Namely, for every α > 0 any algorithm for nα-approximating the value of label cover must run in time at least nΩ(exp(1/α)), where n is the size of the instance. Put differently, if there is a polynomial time algorithm for approximating the value of label cover to within a fact...
متن کاملکاربرد ماشین بردار پشتیبان در طبقهبندی کاربری اراضی حوزه چشمه کیله- چالکرود
Classification of land use extraction always been one of the most important applications of remote sensing and why different methods are created. Over time and with greater accuracy were developed more advanced methods that increase the accuracy and the extraction classes that were closer together in terms of quality are better. SVM is one of these methods in the study of this method for the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0909.3868 شماره
صفحات -
تاریخ انتشار 2009